Classroom Activities

Newton-Raphson Method

Finding the solution to an equation such as f(x) = 0, using the derivative and tangent to achieve better and better approximations to the solution of f(x) = 0.

Formula used is:

 $x_{n+1} = x_n - f(x_n) / f'(x_n)$

'Quick Access' Hints			
◄ and : , these can be accessed via the PRGM menu by pressing SHIFT VARS then F4			
for the ? and F6 then F5 for the :			
?	SHIFT VAR	RS F4	
⋖	SHIFT VAF	RS F5	
1	SHIFT VAF	RS F6 F5	
Ans	SHIFT (-)		

Example:

Find a solution to e^{2x} - 3x - 5 = 0, with the initial value of x = 0

[Note: here that $f(x) = e^{2x} - 3x - 5$ and that $f'(x) = 2e^{2x} - 3$]

Answer: Type in the following (as shown on the right)

Type in the following (as shown on the right)

Now, press $\boxed{\text{EXE}}$ and the ? appears. Enter in the initial value, i.e. x = 0, then press $\boxed{\text{EXE}}$ three times. This displays = $f(x_n)$

then f'(x_n) and lastly the next best approximation, x_{n+1}

Repeat this process until there is a 'matching' x n+1.

N.B. Don't forget to record the iterations as you progress closer to the solution.

Answer: x = -1.654481992 Hence, a solution to $e^{2x} - 3x - 5 = 0$ [N.B. Other Newton-Raphson worksheets are available on the Monaco website.]